\(\int \frac {(A+C \cos ^2(c+d x)) \sec ^{\frac {5}{2}}(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx\) [1234]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 37, antiderivative size = 156 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\frac {\sqrt {2} (A+C) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{\sqrt {a} d}-\frac {2 A \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}}+\frac {2 A \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}} \]

[Out]

2/3*A*sec(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+(A+C)*arctan(1/2*sin(d*x+c)*a^(1/2)*2^(1/2)/cos(d*x
+c)^(1/2)/(a+a*cos(d*x+c))^(1/2))*2^(1/2)*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d/a^(1/2)-2/3*A*sin(d*x+c)*sec(d*x
+c)^(1/2)/d/(a+a*cos(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.57 (sec) , antiderivative size = 156, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.162, Rules used = {4306, 3123, 3063, 12, 2861, 211} \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\frac {\sqrt {2} (A+C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )}{\sqrt {a} d}+\frac {2 A \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d \sqrt {a \cos (c+d x)+a}}-\frac {2 A \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d \sqrt {a \cos (c+d x)+a}} \]

[In]

Int[((A + C*Cos[c + d*x]^2)*Sec[c + d*x]^(5/2))/Sqrt[a + a*Cos[c + d*x]],x]

[Out]

(Sqrt[2]*(A + C)*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])]*Sqrt[Cos
[c + d*x]]*Sqrt[Sec[c + d*x]])/(Sqrt[a]*d) - (2*A*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(3*d*Sqrt[a + a*Cos[c + d*x
]]) + (2*A*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(3*d*Sqrt[a + a*Cos[c + d*x]])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 2861

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[-2*(a/f), Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c +
 d*Sin[e + f*x]]))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rule 3063

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x]
)^(n + 1)/(f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(b*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin
[e + f*x])^(n + 1)*Simp[A*(a*d*m + b*c*(n + 1)) - B*(a*c*m + b*d*(n + 1)) + b*(B*c - A*d)*(m + n + 2)*Sin[e +
f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && LtQ[n, -1] && (IntegerQ[n] || EqQ[m + 1/2, 0])

Rule 3123

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C + A*d^2))*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Si
n[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(b*d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x]
)^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a*d*m + b*c*(n + 1)) + c*C*(a*c*m + b*d*(n + 1)) - b*(A*d^2*(m + n
+ 2) + C*(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, m}, x] && NeQ
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2,
 0])

Rule 4306

Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Sec[a + b*x])^m*(c*Cos[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Cos[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx \\ & = \frac {2 A \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}}+\frac {\left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {-\frac {a A}{2}+\frac {1}{2} a (2 A+3 C) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx}{3 a} \\ & = -\frac {2 A \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}}+\frac {2 A \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}}+\frac {\left (4 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {3 a^2 (A+C)}{4 \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx}{3 a^2} \\ & = -\frac {2 A \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}}+\frac {2 A \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}}+\left ((A+C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx \\ & = -\frac {2 A \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}}+\frac {2 A \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}}-\frac {\left (2 a (A+C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{2 a^2+a x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{d} \\ & = \frac {\sqrt {2} (A+C) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{\sqrt {a} d}-\frac {2 A \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}}+\frac {2 A \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 6.90 (sec) , antiderivative size = 576, normalized size of antiderivative = 3.69 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\frac {2 \cos \left (\frac {c}{2}+\frac {d x}{2}\right ) \sqrt {\frac {1}{1-2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}} \sqrt {1-2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )} \left (-\frac {4 C \sin ^3\left (\frac {c}{2}+\frac {d x}{2}\right )}{3 \left (1-2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )\right )^{3/2}}+\frac {(A+C) \csc ^5\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (-12 \cos ^4\left (\frac {1}{2} (c+d x)\right ) \, _3F_2\left (2,2,\frac {7}{2};1,\frac {9}{2};-\frac {\sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}{1-2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}\right ) \sin ^8\left (\frac {c}{2}+\frac {d x}{2}\right )-12 \operatorname {Hypergeometric2F1}\left (2,\frac {7}{2},\frac {9}{2},-\frac {\sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}{1-2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}\right ) \sin ^8\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (4-7 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )+3 \sin ^4\left (\frac {c}{2}+\frac {d x}{2}\right )\right )+7 \sqrt {-\frac {\sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}{1-2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}} \left (1-2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )\right )^3 \left (15-20 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )+8 \sin ^4\left (\frac {c}{2}+\frac {d x}{2}\right )\right ) \left (\left (3-7 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )\right ) \sqrt {-\frac {\sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}{1-2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}}-3 \text {arctanh}\left (\sqrt {-\frac {\sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}{1-2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}}\right ) \left (1-2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )\right )\right )\right )}{63 \left (1-2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )\right )^{7/2}}\right )}{d \sqrt {a (1+\cos (c+d x))}} \]

[In]

Integrate[((A + C*Cos[c + d*x]^2)*Sec[c + d*x]^(5/2))/Sqrt[a + a*Cos[c + d*x]],x]

[Out]

(2*Cos[c/2 + (d*x)/2]*Sqrt[(1 - 2*Sin[c/2 + (d*x)/2]^2)^(-1)]*Sqrt[1 - 2*Sin[c/2 + (d*x)/2]^2]*((-4*C*Sin[c/2
+ (d*x)/2]^3)/(3*(1 - 2*Sin[c/2 + (d*x)/2]^2)^(3/2)) + ((A + C)*Csc[c/2 + (d*x)/2]^5*(-12*Cos[(c + d*x)/2]^4*H
ypergeometricPFQ[{2, 2, 7/2}, {1, 9/2}, -(Sin[c/2 + (d*x)/2]^2/(1 - 2*Sin[c/2 + (d*x)/2]^2))]*Sin[c/2 + (d*x)/
2]^8 - 12*Hypergeometric2F1[2, 7/2, 9/2, -(Sin[c/2 + (d*x)/2]^2/(1 - 2*Sin[c/2 + (d*x)/2]^2))]*Sin[c/2 + (d*x)
/2]^8*(4 - 7*Sin[c/2 + (d*x)/2]^2 + 3*Sin[c/2 + (d*x)/2]^4) + 7*Sqrt[-(Sin[c/2 + (d*x)/2]^2/(1 - 2*Sin[c/2 + (
d*x)/2]^2))]*(1 - 2*Sin[c/2 + (d*x)/2]^2)^3*(15 - 20*Sin[c/2 + (d*x)/2]^2 + 8*Sin[c/2 + (d*x)/2]^4)*((3 - 7*Si
n[c/2 + (d*x)/2]^2)*Sqrt[-(Sin[c/2 + (d*x)/2]^2/(1 - 2*Sin[c/2 + (d*x)/2]^2))] - 3*ArcTanh[Sqrt[-(Sin[c/2 + (d
*x)/2]^2/(1 - 2*Sin[c/2 + (d*x)/2]^2))]]*(1 - 2*Sin[c/2 + (d*x)/2]^2))))/(63*(1 - 2*Sin[c/2 + (d*x)/2]^2)^(7/2
))))/(d*Sqrt[a*(1 + Cos[c + d*x])])

Maple [A] (verified)

Time = 1.32 (sec) , antiderivative size = 245, normalized size of antiderivative = 1.57

method result size
parts \(-\frac {A \sqrt {2}\, \left (\sec ^{\frac {5}{2}}\left (d x +c \right )\right ) \sqrt {\left (1+\cos \left (d x +c \right )\right ) a}\, \left (3 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ) \left (\cos ^{3}\left (d x +c \right )\right )+\sqrt {2}\, \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )+3 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ) \left (\cos ^{2}\left (d x +c \right )\right )-\sqrt {2}\, \cos \left (d x +c \right ) \sin \left (d x +c \right )\right )}{3 d a \left (1+\cos \left (d x +c \right )\right )}-\frac {C \sqrt {2}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ) \left (\sec ^{\frac {5}{2}}\left (d x +c \right )\right ) \sqrt {\left (1+\cos \left (d x +c \right )\right ) a}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (\cos ^{2}\left (d x +c \right )\right )}{d a}\) \(245\)
default \(-\frac {\sqrt {2}\, \left (\sec ^{\frac {5}{2}}\left (d x +c \right )\right ) \sqrt {\left (1+\cos \left (d x +c \right )\right ) a}\, \left (3 A \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (\cos ^{3}\left (d x +c \right )\right ) \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+3 C \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (\cos ^{3}\left (d x +c \right )\right ) \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+A \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right ) \sqrt {2}+3 A \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+3 C \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )-A \cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {2}\right )}{3 d a \left (1+\cos \left (d x +c \right )\right )}\) \(264\)

[In]

int((A+C*cos(d*x+c)^2)*sec(d*x+c)^(5/2)/(a+a*cos(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/3*A/d*2^(1/2)/a*sec(d*x+c)^(5/2)*((1+cos(d*x+c))*a)^(1/2)/(1+cos(d*x+c))*(3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/
2)*arcsin(cot(d*x+c)-csc(d*x+c))*cos(d*x+c)^3+2^(1/2)*cos(d*x+c)^2*sin(d*x+c)+3*(cos(d*x+c)/(1+cos(d*x+c)))^(1
/2)*arcsin(cot(d*x+c)-csc(d*x+c))*cos(d*x+c)^2-2^(1/2)*cos(d*x+c)*sin(d*x+c))-C/d*2^(1/2)/a*arcsin(cot(d*x+c)-
csc(d*x+c))*sec(d*x+c)^(5/2)*((1+cos(d*x+c))*a)^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)^2

Fricas [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 135, normalized size of antiderivative = 0.87 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=-\frac {\frac {3 \, \sqrt {2} {\left ({\left (A + C\right )} a \cos \left (d x + c\right )^{2} + {\left (A + C\right )} a \cos \left (d x + c\right )\right )} \arctan \left (\frac {\sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right )}{\sqrt {a}} + \frac {2 \, {\left (A \cos \left (d x + c\right ) - A\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{3 \, {\left (a d \cos \left (d x + c\right )^{2} + a d \cos \left (d x + c\right )\right )}} \]

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(5/2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

-1/3*(3*sqrt(2)*((A + C)*a*cos(d*x + c)^2 + (A + C)*a*cos(d*x + c))*arctan(sqrt(2)*sqrt(a*cos(d*x + c) + a)*sq
rt(cos(d*x + c))/(sqrt(a)*sin(d*x + c)))/sqrt(a) + 2*(A*cos(d*x + c) - A)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c
)/sqrt(cos(d*x + c)))/(a*d*cos(d*x + c)^2 + a*d*cos(d*x + c))

Sympy [F(-1)]

Timed out. \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\text {Timed out} \]

[In]

integrate((A+C*cos(d*x+c)**2)*sec(d*x+c)**(5/2)/(a+a*cos(d*x+c))**(1/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )^{\frac {5}{2}}}{\sqrt {a \cos \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(5/2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + A)*sec(d*x + c)^(5/2)/sqrt(a*cos(d*x + c) + a), x)

Giac [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )^{\frac {5}{2}}}{\sqrt {a \cos \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(5/2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)*sec(d*x + c)^(5/2)/sqrt(a*cos(d*x + c) + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\int \frac {\left (C\,{\cos \left (c+d\,x\right )}^2+A\right )\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}}{\sqrt {a+a\,\cos \left (c+d\,x\right )}} \,d x \]

[In]

int(((A + C*cos(c + d*x)^2)*(1/cos(c + d*x))^(5/2))/(a + a*cos(c + d*x))^(1/2),x)

[Out]

int(((A + C*cos(c + d*x)^2)*(1/cos(c + d*x))^(5/2))/(a + a*cos(c + d*x))^(1/2), x)